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We have developed a numerical procedure to clarify the critical behavior near a quantum phase transition by
analyzing a multipoint correlation function characterizing the ground state. This work presents a successful
application of this procedure to the string order parameter of the S=1 XXZ chain with uniaxial single-ion
anisotropy. The finite-size string correlation function is estimated by the density-matrix renormalization-group
method. We focus on the gradient of the inverse-system-size dependence of the correlation function on a
logarithmic plot. This quantity shows that the finite-size scaling sensitively changes at the critical point. The
behavior of the gradient with increasing system size is divergent, is stable at a finite value, or rapidly decreases
to zero when the system is in the disordered phase, at the critical point, or in the ordered phase, respectively.
The analysis of the finite-size string correlation functions allows precise determination of the boundary of the
Haldane phase and estimation of the critical exponent of the correlation length. Our estimates of the transition
point and the critical exponents, which are determined only by the ground-state quantities, are consistent with
results obtained from the analysis of the energy-level structure. Our analysis requires only the correlation
functions of several finite sizes under the same condition as a candidate for the long-range order. The quantity
is treated in the same manner irrespective of the kind of elements which destroy the order concerned. This
work will assist in the development of a method for directly observing quantum phase transitions.
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I. INTRODUCTION

Quantum phase transitions originating from quantum fluc-
tuations have been extensively studied as a hot issue in
condensed-matter physics. Several interesting characteristics
of the transitions appear in the low-energy behavior of the
systems. Two types of approach can capture the phase tran-
sitions and critical phenomena precisely when the transition
is continuous. One is analyzing the energy-level structure.
The other involves considering the ground-state behavior.

In the former approach, a standard method is to analyze
the structure of the energy levels of finite-size systems based
on the finite-size scaling �FSS� assumption. For example, the
scaled energy gap1 is often used to estimate the boundary of
the gapped phase as the transition point. This is called
phenomenological-renormalization-group �PRG� analysis.
However, it is difficult to estimate the transition point when a
logarithmic correction appears in the dependence of the en-
ergy difference. A typical example is the Berezinskii-
Kosterlitz-Thouless �BKT� transition.2 To resolve this diffi-
culty, the level-spectroscopy method has been developed3

and precise determinations of phase transitions have been
successfully made for various transitions in many models.
Unfortunately, this analysis is complicated in that appropriate
adjustments of the procedure are required according to the
type of phase transition, which must also be known in ad-
vance.

In the latter approach, on the other hand, quantities that
characterize the ground state are carefully observed. One of
these quantities is the multipoint correlation function. The
long-range behavior of correlation functions shows whether
the system exhibits long-range order. If a correlation function
survives to be nonzero in the long-range limit, it is an appro-
priate order parameter. However, it is not easy to capture a

phase transition using this strategy because reliable and pre-
cise data on correlation functions are necessary for large sys-
tems. The system sizes that are treated in numerical-
diagonalization calculations are insufficient. For this reason,
the latter approach has been employed in only a few studies.
Therefore, no systematic procedure for analyzing ground-
state quantities to capture quantum phase transitions has
been established to date.

In this paper, we develop a procedure to determine the
transition point and critical exponents by analyzing correla-
tion functions based only on the scaling assumption. A fea-
ture of this approach is that only the common quantities un-
der the same condition are treated irrespective of the type of
phase transition. We call the procedure ground-state
phenomenological-renormalization-group �GSPRG� analysis.
To confirm its validity and usefulness in detecting phase
transitions, we apply it to a nontrivial ground state in the
antiferromagnetic �AF� S=1 XXZ chain with uniaxial single-
ion anisotropy by the density-matrix renormalization-group
�DMRG� method.4,5

In the isotropic case of this system, there exists a nonzero
energy gap between the unique ground state and the first
excited state, called the Haldane gap.6,7 It is known that
when anisotropy is introduced, of the single-ion type or of
the XXZ-type exchange interaction, the Haldane gap de-
creases and finally closes. The region where the nonzero
Haldane gap exists is called the Haldane phase. The phase
diagram of the AF S=1 chain with anisotropy of the two
types, including the Haldane phase, has been extensively
studied by analyzing the energy-level structure, assisted by
the level-spectroscopy method.8–11

It is well known that in many AF spin systems, the stan-
dard spin-spin correlation function gives the so-called Néel
order. In the ground state in the Haldane phase, however, the
spin-spin correlation function decays exponentially with a
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finite correlation length and the Néel order no longer exists.
In this sense, the Haldane phase is a disordered phase. How-
ever, the string order parameter is known to characterize the
ground state in the Haldane phase, in which the longitudinal
and transverse string order parameters are nonzero.12,13 From
the viewpoint of the string order, it is possible to treat the
Haldane phase as an ordered phase and capture the phase
transition at the boundary. This approach has been applied to
numerical-diagonalization data of the Haldane phase in S
=1 systems.8,14,15 Unfortunately, only very small system
sizes were available and hence it was quite difficult to cap-
ture precisely the critical behavior of the string order near the
transition point.

In this situation, we can obtain numerical data of the
string order of this model for much larger system sizes by
using DMRG for GSPRG analysis. Consequently, it is pos-
sible to examine the phase transition at the boundary of the
Haldane phase from the viewpoint of the string order. We
compare our results with those from the analysis of the
energy-level structure. This comparison provides a system-
atic and consistent understanding of the phase transition.

This paper is organized as follows. The model Hamil-
tonian and order parameters are defined in Sec. II. The analy-
sis procedure which we have developed is introduced in Sec.
III. The numerical results and discussions are given in Sec.
IV. Section V consists of a summary of this work and some
remarks.

II. MODEL HAMILTONIAN AND ORDER PARAMETERS

We consider the following Hamiltonian:

H = �
i=1

N−1

�J�Si
xSi+1

x + Si
ySi+1

y � + JzSi
zSi+1

z � + D�
i=1

N

Si
z2, �1�

where N is the system size, Si
� ��=x ,y ,z� are spin-1 opera-

tors, J and Jz represent the XXZ-type anisotropic exchange
interaction, and the parameter D represents uniaxial single-
ion anisotropy. In this paper, energies are measured in units
of J and hence we take J=1 hereafter. The boundary condi-
tion of the system is open. An antiferromagnetic chain is
usually characterized by the Néel order parameter defined as

ONéel
� = lim

�i−j�→�
ONéel

� �i, j� , �2�

where ONéel
� �i , j� is the Néel correlation function given by

ONéel
� �i, j� = �− 1�i−j�Si

�Sj
�� . �3�

Here �B̂� represents the ground-state expectation value of an

arbitrary operator B̂. In the Haldane phase, the Néel order
parameter vanishes. However, the string order introduced by
den Nijs and Rommelse12 appears instead. The string order
parameter is given by

Ostr
� = lim

�i−j�→�
Ostr

� �i, j� , �4�

where the string correlation function Ostr
� �i , j� is given by

Ostr
� �i, j� = −	Si

� exp
i� �
k=i+1

j−1

Sk
��Sj

�� . �5�

Kennedy and Tasaki13 extensively studied the string order
and applied a nonlocal unitary transformation to Hamiltonian
�1�. Thereby they obtained

Ostr
� = Oferro

� �H̃� for � = x or z , �6�

where Oferro
� =lim�i−j�→��Si

�Sj
��, and H̃ is obtained by applying

the transformation to the original Hamiltonian H. In the
transformed system, Z2�Z2 symmetry emerges. Breaking of
this symmetry is described by the behavior of the order pa-

rameters Oferro
� �H̃�. When the system is in the Haldane phase,

this Z2�Z2 symmetry is fully broken. When the chain is in a
phase other than the Haldane phase, the full symmetry or a
part of the symmetry survives.8,13,16

III. ANALYSIS PROCEDURE

In this section we introduce our analysis procedure. The
procedure consists of three steps. The first is to calculate the
longitudinal and transverse order parameters by the DMRG
method based on the finite-size algorithm.4,5 Knowing the
behavior of the order parameters enables us to observe the
boundary of the Haldane phase briefly and to confirm that
the transition at the boundary is continuous. If we apply the
FSS analysis of the order parameters,17 we can roughly esti-
mate the critical point and exponents. However, there remain
finite-size effects in these estimates. In order to eliminate the
effects, we carry out a finite-size extrapolation derived from
the FSS formula. As the second step, we introduce a finite-
size quantity which we calculate from the string order pa-
rameters. This quantity reaches the critical exponent just at
the phase boundary when we take the limit N→�. By exam-
ining the behavior of this quantity, it is possible to obtain the
phase boundary and the critical exponent of the order param-
eter at the transition point. At the third step, we estimate the
critical exponent of the correlation length near the transition
point by extrapolating a finite-size quantity at the above tran-
sition point. The present procedure gives consistent and pre-
cise estimates for the critical point and exponents.

A. Calculation of order parameters

To calculate the order parameters, we use the finite
DMRG algorithm with the acceleration algorithm introduced
by White.4,5,18 A correlation function, such as Eq. �3� and �5�,
is calculated as follows. First, we obtain a variational wave
function of the ground state represented by the matrix prod-
uct state �MPS�:
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��� = �
s�

�
��

�Us1,�2

�2�,s2U�2,�3

�3�,s3
¯ U�N/2−2,�N/2−1

�N/2−1�,sN/2−1A�N/2−1,�N/2+2

sN/2,sN/2+1 V�N/2+2,�N/2+3

�N/2+2�,sN/2+2
¯ V�N−2,�N−1

�N−2�,sN−2V�N−1,sN

�N−1�,sN−1��s1s2 ¯ sN�

�s� = s1,s2, . . . ,sN, �� = �2,�3, . . . ,�N−1� , �7�

where U and V are matrices satisfying

U�i�†U�i� = 1 �i = 2, . . . ,N/2 − 1� , �8a�

V�j�V�j�† = 1 �j = N/2 + 2, . . . ,N − 1� , �8b�

respectively, and A is the ground state of the renormalized
Hamiltonian which is obtained by applying the density-
matrix renormalization transformation to Hamiltonian �1�. A
truncation error � due to the cutoff mF is estimated by 1
−Tr�A�A�, where mF is the number of states preserved in the
DMRG iterations.4 Using this wave function, we estimate the
expectation value Ostr

� �i , j� as follows:

Ostr
� �i, j� = − ���Si

�S̃i+1
�

¯ S̃j−1
� Sj

����

= − Tr�E1,1
�2�E1

�3�
¯ E1

�i−1�ESi
�

�i�E
S̃i+1

�
�i+1�

¯ E
S̃N/2−1

�
�N/2−1�

�E
S̃N/2

� ,S̃N/2+1
�

�A�
E

S̃N/2+2
�

�N/2+2�
¯ E

S̃j−1
�

�j−1�
ESj

�
�j�E1

�j+1�
¯

�E1
�N−2�E1,1

�N−1�� . �9�

Here, 1 is the identity matrix in spin-1 space and S̃� is de-

fined as S̃�=exp�i�S��. Each E is a matrix for an arbitrary
local operator O defined by

EO,O
�2� = �

s1,s1�,s2,s2�

�s1�O�s1���s2�O�s2��Us1

�2�,s2 � �U
s1�
�2�,s2���,

�10a�

EO
�i� = �

si,si�

�si�O�si��U
�i�,si � �U�i�,si��� �3 � i � N/2 − 1� ,

�10b�

EO,O
�A� = �

sk,sk�,sk+1,sk+1�

�sk�O�sk���sk+1�O�sk+1� �Ask,sk+1

� �Ask�,sk+1� �� �k = N/2� , �10c�

EO
�j� = �

sj,sj�

�sj�O�sj��V
�j�,sj � �V�j�,sj��� �N/2 + 2 � j � N − 2� ,

�10d�

EO,O
�N−1� = �

sN−1,sN−1� ,sN,sN�

�sN−1�O�sN−1� ��sN�O�sN� �VsN

�N−1�,sN−1

� �V
sN�
�N−1�,sN−1� ��. �10e�

When calculating a two-point correlation function such as

Eq. �3�, we replace all the operators S̃� with 1. We also

choose an appropriate correlation function as the longest-
ranged component from among Ostr

� �i , j� or ONéel
� �i , j� for a

fixed N under the open boundary condition. Three desirable
conditions should be met, as follows:

�1� The measurement points i and j are as far as possible
from the edges.

�2� The correlation distance of �j− i� is as long as possible.
�3� The distance �j− i� should increase in proportion to the

system size N.
In order to satisfy the above conditions, we take i=N /3

+1 and j=2N /3. Thus, we consider the order parameter

O��N,D,Jz� = O��N/3 + 1,2N/3,D,Jz� , �11�

where �=x ,z, O� represents ONéel
� or Ostr

� . Note here that N /6
should be an integer. We emphasize again that Eq. �11� is
useful in the case of the open boundary condition.19

The error of the order parameters is estimated as follows:
�1� �O��m1

is calculated in the case of m1=0.95mF.
�2� �O�m=m2

and the truncation error � are calculated in the
case of m2=mF.

�3� The error estimation of the order parameters �O��mF

error

is defined by the formula

�O��mF

error = max���O��m2
− �O��m1

�, ���O��m2
�� . �12�

In this paper, all numerical data have a truncation error �
�10−7.

B. Finite-size scaling analysis

In the general theory of phase transitions, the treatment of
physical quantities depends on whether the transition is con-
tinuous or discontinuous. If the transition is continuous, the
critical behavior of bulk quantities is extracted through the
FSS analysis of finite-size quantities.1 As we observe later,
the DMRG data of correlation functions of the finite-size
systems are continuous near the boundary of the Haldane
phase. The exact-diagonalization �ED� data of the string or-
der parameters are also continuous. Thus, it is possible to
perform FSS analysis of our DMRG data of the string order
parameter.

The present model includes two control parameters, D
and Jz. When Jz is fixed and D is varied, we carry out the
FSS analysis based on the following equation:

Ostr
� �N,D,Jz

fix� = N−	�
��Dc − D�N1/��� , �13�

where �=x or z, Jz
fix is the fixed Jz, and Dc is the critical

point. The same equation concerning the string-type order
parameter was used in Ref. 17. The exponents 	� and �� are
defined as

��N = �,D,Jz
fix� � �Dc − D�−�, �14a�
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Ostr
� �N,Dc,Jz

fix� � N−	�, �14b�

where ��N ,D ,Jz� represents the correlation length. When D
is fixed and Jz is varied, on the other hand, the FSS formula
is given by

Ostr
� �N,Dfix,Jz� = N−	�
��Jz

c − Jz�N1/��� , �15�

where the critical exponents 	� and �� are given by

��N = �,Dfix,Jz� � �Jz
c − J�−�, �16a�

Ostr
� �N,Dfix,Jz

c� � N−	�. �16b�

Note that as the BKT transition point is approached, only Eq.
�14b� and �16b� is realized. In this case, the correlation
length grows exponentially;2 the dependence is different
from Eq. �14a� and �16a�, having a finite exponent.

Successfully obtaining a universal function 
 irrespective
of the system size N in the critical region near the critical
point allows us to determine the critical point and critical
exponents. However, the FSS analysis still has a problem in
that the width of the critical region is unknown. Since the
width depends on the values of the control parameters, it is
difficult to determine or estimate an appropriate width. To
avoid this difficulty, we perform the extrapolation explained
below.

C. Ground-state phenomenological-renormalization-group
analysis

In this paper, we perform a procedure to obtain the tran-
sition point and the critical exponents consistently consider-
ing the ground-state quantities. We call this procedure the
GSPRG analysis. The first step of the procedure is to exam-
ine a finite-size quantity defined as

	��Ñ,D,Jz� =
log�Ostr

� �N2,D,Jz�/Ostr
� �N1,D,Jz��

log�N1/N2�
, �17�

where Ñ= �N1+N2� /2, N2=N+N1, and N=6. Here, we
examine the direction � such that Ostr

� shows critical behav-
ior. The quantity indicates the gradient of the curve of the
dependence of Ostr

� on 1 /N in a plot with both the axes on the
logarithmic scale. The gradient should be constant for large
system sizes when the set of D and Jz corresponds to the

boundary of the Haldane phase. The quantity 	��Ñ ,D ,Jz�
converges to the critical exponent 	� defined by Eqs. �14b�
and �16b� for �D ,Jz� on the boundary. The Ñ dependence of

	��Ñ ,D ,Jz� shows a stable convergence to a finite value
when the system size is increased. On the other hand, when

the point �D ,Jz� is not on the boundary, 	��Ñ ,D ,Jz� shows a
different behavior. For �D ,Jz� inside the Haldane phase, Ostr

�

tends toward a nonzero value as N is increased. Thus the

gradient 	��Ñ ,D ,Jz� rapidly decreases. For �D ,Jz� outside
the Haldane phase, Ostr

� decays rapidly with increasing N.
This decay is more rapid than that for Eqs. �14b� and �16b�.
In this case, the gradient 	��Ñ ,D ,Jz� rapidly increases.
Therefore, we can find the critical point from the difference

in the Ñ dependence of 	��Ñ ,D ,Jz�. The difference is ex-

pected to be more apparent when Ñ increases sufficiently to
diminish the edge effect. In order to estimate the critical

point, we have investigated the behavior of 	��Ñ ,D ,Jz� for
N=6,12, . . . ,90,96 and found the characteristic behavior of

	��Ñ ,D ,Jz� in the region of large Ñ. The numerical proce-
dure to determine the critical point by observing the behavior

of 	��Ñ ,D ,Jz� is as follows:
�1� When the differentiation of the finite-size quantity

	��Ñ ,D ,Jz� satisfies these conditions for a large system size,

	�
�1��Ñ,D,Jz� � 0 ∧ 	�

�2��Ñ,D,Jz� � 0, �18a�

or

	�
�1��Ñ,D,Jz� � 0 ∧ 	�

�2��Ñ,D,Jz� � 0, �18b�

we can consider that the system with �D ,Jz� is at a critical

point. Here 	�
�n��Ñ ,D ,Jz� �n=1,2� is the numerical differen-

tiation given by

	�
�n��Ñ,D,Jz� = � �

��1/Ñ�
�n

	��Ñ,D,Jz� . �19�

The differentiation is approximated by the difference because

Ñ is integer or half integer.
�2� If the differentiation reveals

	�
�1��Ñ,D,Jz� � 0 ∧ 	�

�2��Ñ,D,Jz� � 0, �20�

we can consider that 	��Ñ ,D ,Jz� will decrease rapidly with
increasing system size. In this case, the system with �D ,Jz� is
in the ordered phase with respect to the string order.

�3� If the differentiation satisfies

	�
�1��Ñ,D,Jz� � 0 ∧ 	�

�2��Ñ,D,Jz� � 0, �21�

we can consider that 	��Ñ ,D ,Jz� will increase rapidly with
increasing system size. In this case, the system with �D ,Jz� is
in the disordered phase with respect to the string order.

We summarize the difference in the behavior of

	��Ñ ,D ,Jz� in Table I. Now, the boundary for a finite-size
system between the critical region and the string-ordered
phase is given by N� defined in

	�
�1��N�,D,Jz� � 0 ∧ 	�

�2��N�,D,Jz� = 0, �22a�

or

	�
�1��N�,D,Jz� = 0 ∧ 	�

�2��N�,D,Jz� � 0, �22b�

to find a boundary between Eqs. �18a� and �18b� and Eq.
�20�. We obtain N� as a real positive number because

	�
�i��N� ,D ,Jz� is an interpolated value of 	�

�i��Ñ ,D ,Jz� for i
=1,2. The boundary between the critical region and the
string-disordered phase is, on the other hand, given by N�
defined in

	�
�1��N�,D,Jz� = 0 ∧ 	�

�2��N�,D,Jz� � 0, �23a�

or
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	�
�1��N�,D,Jz� � 0 ∧ 	�

�2��N�,D,Jz� = 0, �23b�

to find a boundary between Eqs. �18a� and �18b� and Eq.
�21�. When the critical behavior appears only at a point, the
width between the critical-ordered boundary and the critical-
disordered boundary shrinks as N� increases. Such behavior
will be presented in Sec. IV B. In this work, we consider the
width of the critical region between the two boundaries to be
an error in our analysis of the transition point if the width is
very narrow. In a case of the BKT transition, the critical-
disordered boundary does not appear. In this case, we must
estimate the transition point carefully only from the critical-
ordered boundary. Details of this treatment will be given in
Sec. IV D.

The estimation of 	� of the string order parameter by
PRG analysis was reported by Hida20 based on finite-size
data of the string orders by an ED method. Since the system
size is limited to being very small, however, the finite-size
effect becomes significant. To avoid this difficulty as much
as possible, Hida20 combined the critical point determined
from the energy gap under the open boundary condition and
the string correlation functions under the periodic boundary
condition. For our purposes, we impose only the open
boundary condition for our DMRG calculations and employ
a definition of string order equation �11� as the longest-
ranged component.

In the final stage of the present analysis, we estimate the
critical exponents ���Dc ,Jz

fix� and ���Dfix ,Jz
c�. We first con-

sider the case where D is controlled for a fixed Jz. Within the
FSS analysis based on Eq. �13�, an appropriate set of Dc, 	�,
and �� is expected to give a universal function 
 near D
=Dc independent of N. However, it is difficult to determine
the width of the critical region, as we have mentioned. We
instead focus our attention on the gradient of the universal
function 
 at D=Dc. We note that the N independence of the
gradient is a necessary condition for the existence of the
universal function 
 near D=Dc. Therefore, we assume that
the gradient for N=N1 and that for N=N2 agree with each
other for the same Dc, 	�, and ��, to give

�N1
	�−1/��

��Ostr
� �N1,D,Jz

fix��
�D

�
D=Dc

= �N2
	�−1/��

��Ostr
� �N2,D,Jz

fix��
�D

�
D=Dc

. �24�

We input Dc and 	��Ñ ,D ,Jz� determined above into D and 	
in this equation and solve with respect to 1 /��. Denoting the

solution by 1 /���Ñ ,Dc ,Jz
fix�, we obtain

1

���Ñ,Dc,Jz
fix�

= 	��Ñ,Dc,Jz
fix�

+
log��O��str

� �N2,Dc,Jz
fix�/�O��str

� �N1,Dc,Jz
fix��

log�N2/N1�
, �25�

where �O��str
� �N ,Dc ,Jz

fix� represents

�O��str
� �N,Dc,Jz

fix� = � �Ostr
� �N,D,Jz

fix�
�D

�
D=Dc

. �26�

We note that ���Ñ ,Dc ,Jz
fix� is a finite-size quantity and we

examine the N dependence of this quantity. An extrapolation

to the limit Ñ→� provides the exponent ���Dc ,Jz
fix�. Here-

after, we call 	��Ñ ,D ,Jz� and ���Ñ ,Dc ,Jz
fix� the finite-size

exponents.
We next consider the case where Jz is controlled for a

fixed D. The same derivation as the above from Eq. �15�
leads to the finite-size exponent:

1

���Ñ,Dfix,Jz
c�

= 	��Ñ,Dfix,Jz
c�

+
log��O��str

� �N2,Dfix,Jz
c�/�O��str

� �N1,Dfix,Jz
c��

log�N2/N1�
, �27�

where �O��str
� �N ,Dfix ,Jz

c� represents

�O��str
� �N,Dfix,Jz

c� = � �Ostr
� �N,Dfix,Jz�

�Jz
�

Jz=Jz
c
. �28�

The extrapolation of ���Ñ ,Dfix ,Jz
c� gives the exponent

���Dfix ,Jz
c�.

IV. RESULTS AND DISCUSSIONS

A. Behavior of order parameters

Let us first review the behavior of the four order param-
eters under consideration in a finite-size system and summa-
rize some important relations between them. In a moderately
large system, we can see indications of asymptotic behavior
in each order parameter, although slow convergence prevents
a full description. Some are characteristic for a given region
of the parameter space, which is specified as one of the
Haldane, Néel, large-D, and XY phases.

We illustrate Ostr
� �300,D ,Jz� and ONéel

� �300,D ,Jz� with
�=x or z in Fig. 1. The D dependences of the order param-
eters on the line Jz=0.5 and their Jz dependences on the line

TABLE I. Behaviors of 	��Ñ ,D ,Jz� in the four phases and near
the three transition lines. HN, HL, HX: Haldane-Néel,
Haldane–large-D, Haldane-XY. RD, RI, SF: rapidly decreasing
finite-size exponent �Eq. �17��, rapidly increasing exponent, stably
finite exponent, as the system size is increased.

Haldane HN transition line Néel

	x�Ñ ,D ,Jz� RD SF RI

	z�Ñ ,D ,Jz� RD RD RD

Haldane HL transition line Large-D

	��Ñ ,D ,Jz� RD SF RI

Haldane HX transition line XY

	��Ñ ,D ,Jz� RD SF SF
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D=0 are shown in Figs. 1�a� and 1�b�, respectively. We now
compare the magnitudes of the four order parameters. �i� If
Jz�0, Ostr

� is larger than ONéel
� . This is a known relation

found by Kennedy and Tasaki.21 �ii� When D=0 and Jz=1,
we have Ostr

x =Ostr
z due to the isotropy of the system. �iii�

When Jz is decreased and when Jz crosses a critical point at
Jz=0, Ostr

x is smaller than ONéel
x . This fact will be discussed

and utilized in Sec. IV D. Although ONéel
x appears to be non-

zero around 0�D�1 with Jz=0.5 and around 0�Jz�0.5
with D=0, we can confirm that ONéel

x in this region vanishes
for the long-ranged limit. On the other hand, Ostr

z around 0
�Jz�0.4 with D=0 looks very small but it survives as a
nonzero quantity in an infinite system, as shown in Sec. IV.

The phase boundaries of Haldane-Néel, Haldane–large-D,
and Haldane-XY are denoted by dotted lines, though they are
given only as indicators as we will determine the boundaries
in Secs. IV B–IV D. We can see that some or all of the order
parameters vanish at the phase boundaries. Also, the order
parameters are continuous around the boundaries, which sug-
gests that the phase transitions are continuous. Therefore, the
FSS analysis and the GSPRG procedure are feasible for cap-
turing critical phenomena in this case except for the BKT
transition which does not satisfy the conditions of Eqs. �14a�
and �16a� and thus requires extra consideration. For GSPRG,
however, it is possible for us to capture the transition by

looking at the exponent 	� as discussed in Sec. IV D.
We next observe the behavior of the four order parameters

in each phase to determine their thermodynamic limits. In
Fig. 2, we illustrate the behavior of the order parameters in
Eq. �11� as a function of the inverse of the system size at the
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representative points �D ,Jz�= �−2,0.5�, �2,0.5�, �0,0.5�, and
�0,−0.5�. These sets of parameters correspond to the Néel
phase, large-D phase, Haldane phase, and XY phase, respec-
tively. We observe that in the Néel phase, only the order
parameters in the z direction remain nonzero in the limit N
→�. All the four parameters vanish in the large-D phase in
the thermodynamic limit. We note that in the Haldane phase,
only the string order parameters in the two directions remain
nonzero in the thermodynamic limit. It is difficult to judge in
Fig. 2�d� whether both of the transverse order parameters in
the XY phase vanish or remain nonzero in the thermody-
namic limit. We plot the same data on a logarithmic scale in
Fig. 3. For large N, the data exhibit a linear behavior, which
suggests that the transverse order parameters in the XY phase
are critical, consistent with previous reports.8,16 Conse-
quently we can confirm that the order parameter O��� ,0 ,
−0.5� vanishes in the XY phase, in the limit N→�.

B. Haldane–large-D transition line

In this subsection, we examine the transition from the
Haldane phase to the large-D phase. This transition is known
to be of Gaussian type. As we observe in Sec. IV A, the
string order parameters in the Haldane phase remain nonzero
for both �=x and z, while both of the Néel order parameters
vanish along the directions x and z. We also observe critical
behavior near the transition line in both Ostr

x and Ostr
z .

To begin with, we consider difficulties in the FSS analysis
near the transition between the two phases. In this analysis,
we have adjusted the critical point Dc and exponents 	� and
�� so that the data for N=24, 48, and 96 follow a universal
function. The results are depicted in Fig. 4. In Fig. 4�a�, we
observe a deviation from the universal function 
 at D, not
far from D=Dc. The appearance of this deviation depends on
the system size and the direction �. Thus, it is not easy to
determine the critical region around D=Dc with finite-size
data less than 100 sites in this case.

Despite this difficulty, we can choose input parameters
Dc, ��, and 	� such that a universal function 
 appears near
the transition point. In Fig. 4�a�, the string correlation func-
tions in the direction �=x provide us with Dc

HL�Jz=1.25�

=1.16 and �x�D=1.16,Jz=1.25�=1.05. On the other hand, in
Fig. 4�b�, the string correlation functions in �=z give
Dc

HL�Jz=1.25�=1.16 and �z�D=1.16,Jz=1.25�=1.20. The es-
timate of the transition point Dc for �=x and that for �=z
agree with each other. This fact strongly suggests that the
string correlation functions for the transverse and longitudi-
nal directions reveal a common phase transition. We should
note that Ostr

x and Ostr
z are clearly different quantities near the

transition point because there are differences in their expo-
nents; for example, 	x=0.312 and 	z=0.756. Our FSS analy-
sis gives �x�D=1.16,Jz=1.25�=1.05 and �z�D=1.16,Jz
=1.25�=1.20. We recall that the growth of the correlation
length determines the critical behavior near the transition
point from a general argument of the renormalization group
concerning critical phenomena. In this framework, only a
single characteristic length in a system shows critical behav-
ior. The characteristic length must be the correlation length
of the system. Thus, the exponent of the correlation length
should be unique for the order parameters. In this case, the
correlation functions of the string order parameters along
both �=x and �=z show critical behavior as shown by the
FSS analysis. From this argument, �x and �z should exhibit a
serious finite-size effect, which we will examine and solve
by GSPRG analysis.

We consider the case of Jz=1.25 in order to observe the
finite-size effect. In Fig. 5 we illustrate our results for the

exponents 	x�Ñ ,D ,1.25�, 	z�Ñ ,D ,1.25�, �x�Ñ ,1.16,1.25�,
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FIG. 3. Order parameters for Hamiltonian �1� in the XY phase as
a function of 1 /N. A fitting based on O�N�=C1N−� is carried out for
N=96,90, . . . ,72. �: ONéel

x ; �: Ostr
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and �z�Ñ ,1.16,1.25� determined by GSPRG analysis. In Fig.
5�a�, we observe the critical-disordered boundary at D
=1.17,N�=55.3. The critical-ordered boundary is also ob-
served at D=1.15,N�=45.5. On the other hand, we obtain no
boundaries defined in Eqs. �22a�, �22b�, �23a�, and �23b� in
the case of D=1.16. This fact suggests that the critical region
for finite-size systems in our study is realized around D
=1.16 with a narrow width. In order to confirm whether the
width shrinks or not as the system sizes increase, we exam-

ine the relationship between N� and D so that the case is on
the boundary. We obtain some of the critical-disordered
boundaries at �D=1.19,N�=36.8�, �D=1.2,N�=32.7�, and
�D=1.21,N�=29.8�. We also obtain some of the critical-
ordered boundaries at �D=1.14,N�=32.7�, �D=1.13,N�
=30.0�, and �D=1.12,N�=29.1�. These results indicate that
the critical region for a given N� is gradually narrower when
N� increases although the expression of the relationship be-
tween N� and D on the boundary is unknown in the present
stage. It is reasonable to conclude that the critical region
shrinks and goes to the transition point for the infinite-size
system. When one can confirm whether the critical region
between the two boundaries is sufficiently narrow or not, the
width of the region should be regarded as an error coming
from the maximum system size and the interval of D in the
performed calculations. In this work, thus, we conclude
Dc

HL�Jz=1.25�=1.16�0.01. Note here that we can obtain the
same critical point from 	z in Fig. 5�b� in the same manner.
Hereafter, we determine critical points with an error in this
way. In order to confirm whether critical behaviors �14b� and
�16b� appears or not in the original correlation functions,
each string correlation function as a function of 1 /N is
shown in the logarithmic scale in inset figures. The finite-size
string correlations for each direction clearly reveal a power-
law decay behavior at the critical point Dc

HL�Jz=1.25�=1.16.
On the other hand, a behavior deviating from power-law de-
cay appears in the cases of D=1.0 and D=1.3 in the ordered
and disordered phases, respectively, as we have mentioned in
Sec. III C. Note here that a comparison with these insets
shows that the system-size dependence of finite-size quantity
�17� sensitively change near the transition point. We next

observe the Ñ dependence of the finite-size exponents of

�x�Ñ ,1.16,1.25� and �z�Ñ ,1.16,1.25� for Jz=1.25 and
Dc

HL�Jz=1.25�=1.16 in Fig. 5�c�. These two finite-size expo-

nents, �x and �z, get gradually closer with increasing Ñ. In

the limit Ñ→�, �x and �z appear to approach a single value
�1.2. This is consistent with the above argument on the
unique characteristic length. Consequently, the problem of
the disagreement of �x and �z in the FSS analysis occurs due
to the finite-size effect and is resolved by GSPRG analysis.

We now consider the transition point Dc for a fixed
Jz=1. In this case, many studies have reported various esti-
mates for the boundary of the Haldane phase, Dc: Dc
=0.93�0.02 in Ref. 22, Dc=0.99�0.02 in Ref. 23, Dc
=0.90�0.05 in Ref. 15, Dc=1.001�0.001 in Ref. 24, Dc
=0.95 in Ref. 25, Dc=0.99 in Ref. 10, and Dc�0.97 in Ref.
26. Among these works, only a single study15 was based on
the analysis of the string order, although data from the
numerical-diagonalization calculations in this study for small
clusters might not be sufficient to show the transition point.
Recently, Tzeng and Yang26 investigated the fidelity
susceptibility27 of the ground state by the DMRG method to
detect quantum phase transitions for the system. This work
examines only the information of the ground state, a feature
that is shared with our present analysis. Other works ana-
lyzed the structure of low-energy levels. From the present
analysis, our estimate is Dc=0.975�0.015, which we have
obtained irrespective of �=x or �=z. Although the estimates
are all very close to each other, there are small differences
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on Jz=1.25. Ñ is given by Eq. �17�. The dotted curves in �a� and �b�
are guides for the eyes. The dotted lines in �c� are linear fitting lines.
The string correlation functions Ostr

x �N ,D ,Jz=1.25� and
Ostr

z �N ,D ,Jz=1.25� as functions of 1 /N are shown in the logarith-
mic scales in the inset figures of �a� and �b�, respectively.

UEDA, NAKANO, AND KUSAKABE PHYSICAL REVIEW B 78, 224402 �2008�

224402-8



between them even when taking errors into account. The
reason for these differences is not clear at present and should
be resolved as a future issue.

Next, we consider the transition point Dc for a fixed Jz
=0.5. The estimation of this point is suitable for checking the
availability of our analysis procedure because a relatively
large exponent � which is reported to be 2.38 by analysis of
the energy-level structure appears.10 Several previous studies
presented numerical data of the transition point as follows:
Dc=0.635 in Ref. 9, Dc=0.65 in Ref. 10, and Dc
=0.633�0.02 in Ref. 28. All of these works examined the
free energy near the critical point to determine the critical
point. In particular, the recent study28 developed rapidly con-
verging methods by using the differentiations of a quantity,
which is derivative of the ground-state energy with respect to
a controlled parameter, as a function of N. From the view-
point of using only information in the ground state for de-
tecting a quantum phase transition, our analysis and their
analysis have a common policy. Our estimate for Dc�Jz
=0.5� is 0.67�0.04, and this estimate is also consistent with
all previous reports.

In accordance with the above results, we apply the proce-
dure to estimate the critical behavior for other Jz, confirming
the Jz dependence of Dc

HL�Jz� and ��Dc
HL,Jz�. The error of

��Dc
HL,Jz� is estimated by ���Dc

HL,Jz�−��Dc
Ñ=93,HL,Jz��. We

illustrate our results in Fig. 6 together with those of previous
reports.9,11,24 Our estimates of Dc

HL�Jz� and ��Dc
HL,Jz� are

common for �=x and �=z within errors. Our transition line
is almost consistent with those of previous reports,9,11,24 in
which the energy-level structure is analyzed. Our estimates
of � also agree well with previous reports within errors. Con-
sequently, our GSPRG analysis successfully captures the
transition between the Haldane phase and the large-D phase.

The correlation length exponent � is known to be related
to other critical exponents. In the Gaussian transition,
Okamoto29 obtained the following relationship from the ar-
gument by the bosonization method:

� =
2

4 − 	Néel
z , �29�

where 	Néel
� is the exponent defined by �S0

�Sr
����−1�rr−	Néel

�

at the transition point. Note here that 	Néel
x 	Néel

z =1 holds. To
confirm the consistency between our estimate of � and the
decay of the Néel correlation function, we plot our
ONéel

x �N ,D ,Jz� at Jz=1 and Dc=0.975 as a function of 1 /N
on a logarithmic scale in Fig. 7. We clearly observe a linear
behavior for large N. We have added the dotted line

ONéel
x �N ,D ,Jz��N−	Néel

x
with 	Néel

x =0.40. From Eq. �29�, this
value of 	Néel

x �=1 /	Néel
z � gives ��1.33, which is consistent

with our estimate shown in the inset of Fig. 6. This consis-
tency also supports the scaling hypothesis that the growth of
the unique correlation length determines all the critical be-
havior around the transition point.

C. Haldane-Néel transition line

In this subsection, we examine the transition from the
Haldane phase to the Néel phase. This transition is consid-

ered to be of Ising type. We recall that in a transition of Ising
type, the exponent of the correlation length is �=1 when the
system approaches the transition point.

We have mentioned in the above that the longitudinal
string order is nonzero in both of the Haldane phase and the
Néel phase and that the order does not reveal the critical
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behavior at the transition point. This means that the longitu-
dinal string order is not appropriate for studying the
Haldane-Néel transition. Therefore, to study this transition
we examine only the transverse string order. By GSPRG
analysis of this order, we determine the transition point Jz

c for
a given D or the transition point Dc for a given Jz and the
critical exponent � near the transition point.

We consider the case of D=0.5. We illustrate our results
for finite-size exponents 	x and � in Figs. 8�a� and 8�b�,
respectively. Our estimates are Jz

c,HN�D=0.5�
=1.4905�0.0015 and ��Jz=1.4905,D=0.5�=1.006�0.016.
Our estimate of the transition point is different from that of
Jz

c,HN�D=0.5�=1.536 reported in Ref. 9. To find the reason
for the difference between the two estimates, we have made
numerical-diagonalization calculations of finite-size clusters
up to N=22 under the periodic boundary condition and ob-
tained the eigenenergies of the low-energy states. We have
performed the same analysis as that in Ref. 9 and determined

the finite-size critical point Jz
c,HN�Ñ ,D=0.5� as Jz at which

the scaled energy gap does not depend on the system size for
N=2. The results are depicted in Fig. 8�c�. From our nu-
merical data for N=8,10, . . . ,16, we successfully reproduce
the results of Ref. 9. On the other hand, we can observe that

Jz
c,HN�Ñ ,D=0.5� of Ñ=17,19,21 gradually departs from the

fitting line of the extrapolation in Ref. 9. Our additional data
points approach our estimates from the string order by the
DMRG calculations, as shown by the guide for the eyes de-
noted by the broken curve in Fig. 8�c�. This agreement sug-
gests that the results from the numerical-diagonalization and
DMRG calculations are consistent with each other if we ac-
cept the interpretation suggested by the broken curve. Hence,
careful extrapolation with respect to system size is required.

The Ñ dependence of our additional data appears expo-

nential rather than polynomial. A similar Ñ dependence of

Jz
c,HN�Ñ ,D=1� was reported in Ref. 11, in which calculations

up to N=48 based on the multitarget DMRG method with an
infinite-system algorithm were carried out under the periodic
boundary condition. Our result and Ref. 11 suggest that the
absence of polynomial components does not depend on the
values of the parameters of the system. It is important to be
careful when a system-size extrapolation of an Ising transi-
tion point is carried out by the PRG analysis of the energy-
level structure.

We now compare estimates of the transition point be-
tween Ref. 11 and the present analysis. Reference 11 gives
Jz

c,HN�D=0�=1.186. From the present analysis of our data up
to N=150, we obtain Jz

c,HN�D=0�=1.1860�0.0003 for the
transition point. Our estimate, with a very small error, agrees
excellently with the estimate in Ref. 11.

We now discuss our estimate of �. Our estimate ��Jz
=1.4905,D=0.5�=1.006�0.016 is in good agreement with
�=1 of the Ising-type transition. This agreement also sug-
gests that our analysis successfully captures the Haldane-
Néel transition as well as the Haldane–large-D transition.

We can now summarize our results for the transition
points Dc for a given Jz and the critical exponents � between
the Haldane and the Néel phases from our DMRG data. The
results are depicted in Fig. 9. Figure 9�a� shows that our

estimates for the transition points are in good agreement with
the results in Ref. 11 of the multitarget DMRG method and
the results in Ref. 9 of the numerical diagonalizations. In Fig.
9�b�, our estimates for the exponent agree well with �=1
irrespective of Jz. Note here that the center values of our
estimates, namely, the extrapolated results, are much closer
to �=1 than the results in Ref. 11, although our errors are
estimated to be larger. Note also that the error in ��Dc

HN
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=2.015,Jz=2.5� is quite large. The reason for this is consid-
ered to be that the curve of the Haldane-Néel transition
points and that of the Haldane–large-D transition points ap-
proach each other. A similar phenomenon appears when the
central charge c on the curve of the Haldane–large-D transi-
tion points was estimated in Ref. 9, in which the estimate of
c gradually deviates from c=1 around Jz�1. In the report of
Tzeng and Yang,26 the transition point and the critical expo-
nent are given as Dc

HN�Jz=1��−0.31 and ��Dc
HN=−0.31,Jz

=1.0��1.05, respectively, from fidelity susceptibility analy-
sis. Our estimated values at the same point are Dc=
−0.315�0.003 and �=1.004�0.019, which are more pre-
cise than the values of Tzeng and Yang.26

D. Haldane-XY transition line

In this subsection, we examine the transition from the
Haldane phase to the XY phase. This transition is considered
to be a BKT-type transition. We recall that in a BKT-type
transition, the exponents 	x=1 /4 and 	z=1 appear at the
transition point and the exponent � cannot be defined be-
cause the correlation length grows exponentially.

We consider the case Jz�0 and examine the magnitudes
of the string order and the Néel order. We refer back to the
behavior of orders characterizing the Haldane phase, in
which we have

�Ostr
z � � 0 and �Ostr

x � � 0, �30�

under the condition

ONéel
x = ONéel

z = 0. �31�

This means that the region

�Ostr
� � � �ONéel

� � �32�

is not in the Haldane phase because inequality �30� and Eq.
�31� cannot both be satisfied at the same time assuming in-
equality �32�. However, it is not as easy to make a direct
comparison of these quantities in the limit N→� as for in-
equality �32�. We can instead compare the finite-size quanti-
ties �Ostr

� �N ,D ,Jz�� and �ONéel
� �N ,D ,Jz��. Recall that for N

=300, �Ostr
� �N ,D ,Jz�� is smaller than �ONéel

� �N ,D ,Jz�� when
Jz�0, whereas �Ostr

� �N ,D ,Jz�� is larger than �ONéel
� �N ,D ,Jz��

when Jz�0. We have studied the system-size dependence of
this behavior; our results are depicted in Fig. 10. The behav-
ior is clearly independent of system size. We can also con-
firm this independence irrespective of D for cases between
the Haldane phase and the XY phase. Our present results
suggest inequality �32� and indicate that the Haldane-XY
transition point satisfies Jz

c,HXY�D��0. The finding is entirely
consistent with previous works. Thus, it is sufficient to con-
sider the case of Jz�0 hereafter in examining the
Haldane-XY transition.

We now estimate Jz
c,HXY by our GSPRG analysis. We con-

sider the case D=−0.5 for Jz�0. For this purpose, we exam-

ine the finite-size exponent 	��Ñ ,D=−0.5,Jz�, and estimate
the critical-ordered boundary point 	�

�1��N� ,D=−0.5,Jz�
given by Eqs. �23a� and �23b�. Our results are depicted in
Fig. 11. We find that the critical-ordered boundary given by
Eq. �23b� appears when Jz is 0.1, 0.15, 0.18, and 0.2, but it
does not appear when Jz is 0. Concerning the x component of
the string order, we find the boundaries at �Jz=0.18,N�
=29.6�x, �Jz=0.15,N�=31.0�x, and �Jz=0.1,N�=34.6�x. Con-
cerning the z component of the string order, on the other
hand, we have �Jz=0.18,N�=32.6�z, �Jz=0.15,N�=35.2�z,
and �Jz=0.1,N�=41.3�z as the boundaries. In the cases of
both of the components, one can observe that N� grows when
Jz approaches Jz=0. These phenomena lead to our result that
Jz

c,HXY is between Jz=0 and Jz=0.1. For estimating the tran-
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FIG. 9. �a� Haldane-Néel transition points. �: our work; +: Ref.
9; �: Ref. 11. �b� Haldane-Néel critical exponent �. The inset fig-
ure compares our � with that of Ref. 11.
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sition point more accurately, the critical-ordered boundary
point is extrapolated to the limit N�→�. The results are
depicted in Fig. 12. Since the leading dependence of Jz

c,HXY

on 1 /N� is unknown, we here choose the power 1 /N� so that
the dependence is almost linear. We can successfully deter-
mine an appropriate value of the power for each �=x and
�=z, although the �=x and �=z values differ from each
other. A linear extrapolation gives Jz

c,HXY�D=−0.5�
=0.00�0.10 from the transverse component and Jz

c,HXY�D=
−0.5�=0.01�0.08 from the longitudinal component. Here
we determine the error as being the difference between the
values obtained by the extrapolation and the finite-size criti-
cal point Jz

c,HXY for maximum N�. Both results suggest
Jz

c,HXY�D=−0.5��0 irrespective of the direction of the string
order parameter, which is consistent with a previous report.9

Next, we examine what type of transition this is. Our
finite-size exponents in Fig. 11 at Jz=0 indicate 	x�D=
−0.5,Jz=0��0.25 and 	z�D=−0.5,Jz=0��1.0. These val-
ues agree well with the exponents of the BKT transition 	x

=1 /4 and 	z=1. Our results are also consistent with many
previous works.3,8,9,30 Therefore, our GSPRG analysis ap-
plied to the string correlation functions is useful in capturing
BKT transitions.

V. SUMMARY AND REMARKS

We have investigated critical behavior near the boundary
of the Haldane phase in the ground state of an anisotropic
S=1 chain from the viewpoint of string correlation functions
estimated precisely by standard finite-size DMRG under the
open boundary condition. We have developed the ground-
state phenomenological-renormalization-group analysis and
used it to analyze the correlation functions. This analysis
provides us with the transition point of the boundary of the
Haldane phase and the critical exponents at and near the
transition point. Our estimates for these quantities agree with
those previously obtained from analysis of the energy-level
structure.

We summarize the transition points as a ground-state
phase diagram in Fig. 13. This figure presents the phase
boundary of the Haldane–large-D, Haldane-Néel, and
Haldane-XY transitions. Note additionally that the dominant
order parameter is Ostr

x in most of the Haldane phase.
A feature of our approach, GSPRG analysis, is that only

common quantities under the same condition are treated in a
unified manner irrespective of the type of phase transition.
Although we have employed the DMRG method in this pa-
per to calculate the order parameters, we are not limited to
the DMRG method if we can obtain precise estimates of the
order parameters. The string order parameters of the Haldane
phase in the S=1 chain are examples. Other multipoint cor-
relation functions for finite-size clusters may also be appli-
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cable. If we precisely calculate an appropriate ground-state
quantity that plays the role of an order parameter, the frame-
work of the analysis would be widely applicable for captur-
ing ground-state critical behavior irrespective of the method
of calculation and the kind of order parameter. We hope that
the procedure presented in this paper contributes to future
studies of quantum phase transitions.
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